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This study examined the temporal dynamics of the inter-limb angles of skilled and less skilled ice climbers
to determine how they explored ice fall properties to adapt their coordination patterns during performance.
We observed two circular time series corresponding to the upper- and lower-limbs of seven expert and
eight inexperienced ice climbers. We analyzed these data through a multiple change-point analysis of
the geodesic (or Fréchet) mean on the circle. Guided by the nature of the geodesic mean obtained by an
optimization procedure, we extended the filtered derivative method, known to be computationally very
cheap and fast, to circular data. Local estimation of the variability was assessed through the number of
change-points computed via the filtered derivatives with p-value method for the time series and integrated
squared error (ISE). Results of this change-point analysis did not reveal significant differences of the
number of change-points between groups but indicated higher ISE that supported the existence of plateaux
for beginners. These results emphasized higher local variability of limb angles for experts than for beginners
suggesting greater dependence on the properties of the performance environment and adaptive behaviors
in the former. Conversely, the lower local variance of limb angles assessed in beginners may reflect their
independence of the environmental constraints, as they focused mainly on controlling body equilibrium.
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1. Context of the application and main objective

Traditionally, it has been argued that the acquisition of movement expertise is characterized by
a linear progression towards invariance in motor output performance. From this perspective,
movement pattern variability is an errorful by-product of noise in the central nervous system
that should be minimized or eliminated with practice. This view is compounded by the types
of motor tasks used to study movement performance in experiments, emphasizing deviations
from an ideal performance template, characteristic of expert behavior [32,34]. However, from an
ecological dynamics perspective, observed variability in motor output in both novice and expert
individuals in performance domains like sport may not necessarily be a reflection of system error
or noise. Expertise in sport results from the adaptation of behaviors to interacting constraints,
individually perceived and encountered. Indeed, the intertwined relationship between perceptions
and actions constrains the direction, and restrains the range of movement possibilities available
for each individual performer. With this emphasis on perception and action to constrain behaviors,
the role of movement pattern stability and functional intra-individual performance variability is
paramount. Beek et al. [5] suggested that the nature of relationship and the coupling of perception
and action is not the same for non-experts and experts, since the expert is more capable of exploiting
information about task-related constraints in order to organize their behaviors.

In traditional research, movement expertise has been captured statistically through calculations
of the magnitude of variance measures like the standard deviation of the mean distribution and
the coefficient of variation [17,28]. These statistical indicators attempt to characterize the data
distribution and the amount of noise in a single measurement pertaining to performance. However,
such statistical measurements only indicate the magnitude of system variability (i.e. the amplitude
and the spatial distribution of performance outcomes over trials), but not the dynamical structure
of the data series [28]. Recent studies have explored the structure of variability for performance
outcomes through identifying the learning dynamics, showing multiple time scales of variability
(such as exponential, power law and S-shaped performance curves) [24,27,29,30]. According
to the dynamical systems’ approach, these multiple time scales emphasize the discontinuities
that typify learning, based on the assumptions that learning is constructed from spontaneous
manifestations of motor coordination and that often it is necessary to destabilize an established
motor pattern in order to provoke the attainment of expert coordination [37]. For instance, it has
been hypothesized [29] that when a system is close to its stable state, it will change at a constant
time scale (i.e. an exponential function), while multiple time scales (i.e. a power law) are expected
to be observed when movement coordination goes through transition. The emphasis in our study
was on discovering statistical measures which capture the structure of movement pattern variability
through observing the temporal dynamics of motor variability during an ice climbing ascent. In this
paper we discuss new data analysis approaches which can demonstrate how studying expertise
differences in sport can benefit from new statistical methodologies. Since movement patterns,
during ice climbing, are predicated on ice fall properties (e.g. shape, steepness, temperature,
thickness and ice density), an important question concerns how ice climbers of various skill levels
exploit affordances (i.e. possibilities for action offered by a particular performance environment
[18]) to organize their upper and lower movements over time. Our hypothesis is that ice fall
properties contain affordances that induce variable motor coordination patterns in expert climbers,
whereas learners use a basic and functionally stable motor organization to achieve their main goal
of maintaining body equilibrium with respect to gravity.

The selected characteristics of different levels of expertise in ice climbing will be statistically
described in Section 2. Our analysis has been based on the collection of angular time series data
for eight beginners and seven experts. Such data fall into the general domain of circular statistics,
for which there are general references [22,25,26]. The concepts of location and dispersion for
circular statistics are really specific and, on a general manifold, we refer to other publications
for a deep understanding of these concepts [9,10,20]. In this article, we have focused on intrinsic
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characteristics, i.e. on the geodesic mean and the geodesic variance. These parameters are the
natural extensions of the standard Euclidean mean and the standard Euclidean variance when
substituting the Euclidean distance by the geodesic distance on the circle; a distance which is
referred to as the arc-length distance. We have recalled the main definitions of these concepts
and apply this measure of dispersion in Section 2.4. As demonstrated in this section, based on
computations of the sample geodesic variance, there was a clear distinction in behaviors between
beginners and experts. However, this difference was mainly due to the fact that expert climbers
explore a larger range of angle values than beginners. To have a better understanding of behaviors
for both groups of climbers at different levels of expertise, we have turned to a local analysis of
these data. In particular, we aimed to develop a change-point analysis of the geodesic mean for
circular data.

The problem of change-point detection is certainly one of the most investigated issues by
statisticians which has led to the development of a huge body of literature; for example [3,12,16]
or, for more recent review, the article by Hušková and Meintanis [21]. It consists of detecting one
or more time points where parameters of a process change. One of these methods, the filtered
derivative, was initially introduced by Benveniste and Basseville [6], Basseville and Nikiforov
[3], and Antoch and Hušková [1]. Generally speaking, this method consists of computing local
estimations of the parameter of interest via a filter like a mean or a M-estimator, and in detecting
changes in these local estimations through derivation. Extensions and theoretical studies have
been considered by Bertrand et al. [7,8]. The statistical contribution of this article is to extend
understanding of the filtered derivative with the p-value method in order to detect multiple change-
points on the geodesic mean for circular data; this method is referred to as fdpv in the following
sections. Regarding our data, and in particular the parameter of interest, it has raised the idea
that the sample geodesic mean was actually an M-estimate obtained through an optimization
procedure. Moreover, no sequential formula was available for such an estimate, i.e. the sample
geodesic of the data set (y1, . . . , yn) could not be obtained using the sample geodesic mean of
the data set (y1, . . . , yn−1) and yn. This convinced us to turn to a method that shows a very low
complexity and a short running time. The main interest of the fdpv method that is used to
detect abrupt changes in the standard Euclidean mean, variance or parameters of a simple linear
regression is the fact that its time and complexity memory are both of order O(n).

The rest of the paper is organized as follows. We present in Section 2 the protocol from which
the data have been obtained and the main characteristics of the climbers included in this study.
We also specify the contribution of our data which is the observation of angular time series and
introduce the concepts of geodesic mean and geodesic variance for circular data which constitute
the parameters of interest of this paper. Section 3 turns to the core of the paper which is the
extension to circular data of the filtered derivative method with p-values allowing us to propose
an efficient change-point analysis method of the geodesic mean of a circular time series. Finally,
we apply the developed methodology and discuss and interpret the results from a practical point
of view in Section 4.

2. Description of the data and global variability analysis

2.1 Participants

Fifteen male ice climbers, divided into two groups, volunteered for this study. Seven expert
climbers with mean age: 32.1 (σ = 6.1); mean height: 176.4 cm (σ = 6.2 cm); mean weight:
68.4 kg (σ = 6.7 kg); skill level in rock climbing: grade 7a+ to 7c on the French rating scale,
which ranges from 1 to 9; mean number of years practicing rock climbing: 17.1 (σ = 5.6); skill
level in ice fall climbing: grade 6–7 on the French rating scale, which goes from 1 to 7 [4]; mean
number of years of practice in ice climbing: 10.4 (σ = 4.7); mean number of days of ice climbing
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per year: 20.6 (σ = 9.3). They were considered as skilled climbers since they were (i) mountain
guides, certified by the International Federation of Mountain GuidesAssociation (IFMGA) or/and
(ii) instructors at the French National School of Skiing andAlpinism (ENSA). The eight beginners
(mean age: 28.5 (σ = 6.4); mean height: 177.2 cm (σ = 5.8 cm); mean weight: 71.8 kg (σ =
8.9 kg)) were students in a Faculty of Sport Sciences at a local university, with 20 h of practice
on an artificial climbing wall and were inexperienced at ice climbing.

2.2 Protocol

To impose a similar task constraint on both groups [28], a sub-maximal level of effort was imposed
that corresponded to a 30 m ice fall climb at grade 5+ for expert climbers (which is a regular grade
for them). The beginners climbed a 30 m ice fall at grade 4 (a common grade assigned to that skill
level). Grade 5 + /6 signifies vertical climbing for most of the ice fall, while grade 4 involves
alternation of steep sections around 80–85◦, with ramps around 60–70◦. For this protocol, the ice
fall selected for the beginners was in three sections: 20 m at 85◦, ramp of 5 m at 70◦, then 5 m
at 80◦. Although a similar task constraint was imposed on the participants, these differences of
grade between the two groups would represent different environmental constraints (i.e. in terms of
steepness). Consequently, to enable a valid comparison between skilled climbers and beginners,
the first 20 m part of the ice fall that corresponded to 85◦ of steepness for both groups was selected
to analyze the motor behavior. Performance data were collected in two sessions during which
the air temperature was, respectively, −8◦C and −12◦C. All climbers were equipped with the
same crampons and ice tools and were instructed to climb at their normal pace. The protocol was
approved by the University ethics committee and followed the declaration of Helsinki. Procedures
were explained to the climbers, who then gave their informed consent to participate.

2.3 Data collection

A frontal camera (25 Hz), positioned 15 m behind the climber perpendicular to the ice fall, digitally
recorded the first 20 m of the climb. A calibration frame delimited the recorded space of climbing
performance and was composed of one vertical rope with marks every 2 m and two horizontal
ropes (at 5 m and at 20 m) with marks every 1 m (total of 20 marks for calibration). Five key points
(the head of left and right ice tools, and the extremity of left and right crampons) were digitized
using Simi Motion Systems®(2004). Since climbing was self-paced, the time of ascent was not
considered in assessing performance.

The nature and the number of ice tool and crampon actions completed during the ascent were
counted, including (i) the ratio between definitive anchorage and repetitive ice tool swinging, and
(ii) the ratio between definitive anchorage and repetitive crampon kicking.

Upper-limb coordination patterns were assessed by using the angle between the horizontal line
and the displacement of the heads of the left and right hand ice tools. Lower-limb coordination
patterns corresponded to the angle between the horizontal line and the displacement of the left
and right crampons (Figure 1). These two signals were smoothed by a Butterworth low-pass filter
(cut-off frequency 6.25 Hz) by Matlab 7.7®(1984–2008, The MathWorks, Inc.) as suggested by
Winter [36] to address noise introduced by body marks digitizing from the video yet preserving
movement information.

We highlighted eight angle modes, each of them are 45◦ span. When the angle was 0 ± 22.5◦,
the two limbs were horizontal, meaning that they were simultaneously flexed or simultaneously
extended, corresponding to an in-phase mode of coordination. When the angle was ±90 ± 22.5◦,
one limb was vertically located above the other limb, meaning that one was flexed, while the other
was extended, corresponding to an anti-phase mode of coordination. Between these values, the
limbs showed a diagonal angle so that coordination was considered in an intermediate mode. The
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(a)

(b)

Figure 1. Angular position of limbs. (a) Angle between horizontal, left limb and right limb. (b) Modes of
limbs’ coordination as regards the angle value between horizontal, left limb and right limb.
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Figure 2. Angular data of the hand ice tools (i.e. time series ULC) for a beginner climber (top) and an expert
one (bottom). The left plots represent the data on the circle. These plots and the associated rose diagram
have been generated using the R package circular. The right plots represent the same data viewed as a
time series (note that the vertical axis is not the same for the beginner and the expert climbers).

angle between the horizontal line and the left and right limbs was positive when the right limb
was above the left limb and negative when the right limb was below the left limb, see Figure 1.
To summarize, we collected two time series of angular data on performance for eight beginners
and seven expert climbers: the first time series was related to the use of ice tools and represents
upper-limb coordination, whereas the second set of data was related to the use of crampons,
corresponding to lower-limb coordination. These time series, whose lengths are more or less
1874 data points (with a duration of 4 s between two points), will be, respectively, denoted by
upper-limb coordination (ULC) and lower-limb coordination (LLC) in the following. Figure 2
illustrates these data for two different climbers and the next section aims to explore the statistical
analysis of the variability characteristics in these data.

2.4 Global variability analysis

Due to the compactness of the circle (particular case of a compact manifold), the standard notions
of mean and variance are not suited for circular data. Refs. [22,25,26] of the extant literature
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contain some detailed analyses of the concepts of location and dispersion for data on a circle (and
for some of the references on a general manifold) (see [9,10,20]). Among these different concepts
of location, we have focused in this article on the notions of a geodesic mean (or intrinsic mean)
and geodesic variance (or intrinsic variability), that is on characteristics which are intrinsically
defined via a distance on the manifold, here the circle S1. In our opinion, these concepts seemed
more natural than the classical extrinsic mean (obtained as the projection on the circle of the
point with abscissa (resp. ordinate) equal to the mean of the cosine (resp. sine) of the angle) and
extrinsic variance which are the concepts on which the general references [22,25,26] are based on.

For the specific manifold of the circle, denoted by S1, the geodesic distance is the arc-length
distance (expressed in degrees) which for two angles (α, β) ∈ [−180◦, 180◦)2 is expressed as

dG(α, β) = 180◦ − |180◦ − |α − β‖. (1)

Now, given n observations y1, . . . , yn of angles (expressed in radians units), the geodesic sample
mean is defined by

µ̂G = Argmin
µ∈S1

1
n

n∑

i=1

dG(yi, µ)2 (2)

and the geodesic sample variance by

σ̂ 2
G = 1

n

n∑

i=1

dG(yi, µ̂G)2, (3)

which obviously satisfy 0 ≤ σ̂ 2
G ≤ (180◦)2. The sample geodesic mean and sample geodesic

variance generalize in a very natural way the standard (Euclidean) sample mean and sample
variance: the Euclidean distance is simply replaced by the geodesic distance. The notation µG

and σ 2
G stand for the theoretical geodesic mean and variance. The geodesic mean µG may not

be unique, see [13,19,23] for a complete survey of this topic (on the circle). For example, the
geodesic mean can be any point of the circle for an uniform distribution on [−180◦, 180◦). Despite
this, the sample geodesic mean is almost surely unique. Regarding the variances, the theoretical
and the geodesic sample variances are necessarily unique. We applied this concept of dispersion
for circular data to the time series ULC and LLC for all ice climbers.

Results are depicted in Figure 3 (top left). These findings make it clear that the global variance
(i.e. the variance computed on the overall time series) was really linked to the intrinsic performance
level of the climber. This clustering effect was actually mainly due to the large range of angles used
by experts in contrast to beginners (see the top right plot of Figure 3). Indeed, if we had artificially
rescaled the data such that the range of all the time series was [−90◦, 90◦] (affine transformation
applied to each angular time series), the geodesic variance would be less discriminant (see the
right plot of Figure 3). To confirm these visual characteristics, we conducted a one-way analysis of
variance (ANOVA; fixed factor: skill level). We obtained significantly higher geodesic variances
of ULC (F1,13 = 27.28, p = 0.0002) and LLC (F1,13 = 7.52, p = 0.0017) for expert climbers than
for beginners if we consider the raw data. However, based on the rescaled data, there was no clear
evidence of significant different variances (F1,13 = 2.72, p = 0.123 for the ULC time series and
F1,13 = 1.81, p = 0.201 for the LLC time series).

In conclusion, the global variability was almost linked to the global performance of the climber
and did not really reflect the climber’s style of performance. Figure 2 shows that expert climbers
explored a larger range of angular positions of limbs than non-experts. Notably, according to the
angular position classification of Figure 1, expert climbers exploited horizontal, diagonal, vertical
and crossed angular positions while non-experts mostly used horizontal and diagonal angular
positions.
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Figure 3. Upper-limb coordination versus lower-limb coordination. The abscissa (resp. the ordinates) corre-
spond to the time series ULC (resp. LLC). (a) Geodesic variances of raw data. (b) Ranges of the time series
(in ◦). (c) Geodesic variances on data artificially rescaled.

We demonstrate in the next section that a local estimation of the variability, based on a
segmentation of the circular time series, provides more information on the behavioral differences
in-between beginners and in-between expert climbers. And we highlight that the local estimation
is almost independent of the global performance, i.e. independent of the support of the data.

3. Filtered derivative method for circular data

In this section, we extended a procedure based on filtered derivatives with a p-value to detect
changes in the geodesic mean of circular data. Let y1, y2, . . . , yn be the sample of a circular time
series of length n. We decompose the methodology into two different steps: detection of potential
change-points and then deletion of false alarms.

Step 1 Detection of potential change-points.
Roughly speaking, the filtered derivative method consists of computing local estimations of the

parameter of interest and to detect changes on these local estimations. We define for some integer
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A ≥ 1 and for k ∈ {A + 1, . . . , n − A} the statistic D(k, A) by

D(k, A) := dG(µ̂G[(k − A + 1) : k], µ̂G[(k + 1) : (k + A)]), (4)

where µ̂G[i : j] (for 1 ≤ i < j ≤ n) is the geodesic sample mean based on the observations
yi, yi+1, . . . , yj−1, yj. In [1] or [7], potential change-points are selected as times corresponding
to the local maxima of the absolute value of the filtered derivative time series D(·, A), moreover,
when this last quantity exceeds a given threshold. Then, in [8], the authors used a slightly differ-
ent approach: a probability of a type I error is fixed at a level p1 ∈ (0, 1) and the corresponding
threshold C1 is given by

P




max

k∈[A,n−A]
D(k, A)

︸ ︷︷ ︸
:=M(A)

> C1 | H0 is true




= p1, (5)

where H0 represents the null hypothesis, corresponding here to the absence of change-points.
More specifically, H0 corresponds to the situation where y1, . . . , yn are independent realizations
of the same random variable Y . Bertrand et al. [8] considered the problem of detecting changes in
the Euclidean mean, variance and parameters of the simple linear regression. For these problems,
we managed to determine the asymptotic survival function of M(A) under the assumption of inde-
pendence of the observations when Y followed a distribution satisfying some moments conditions.
The translation to circular data is not straightforward, and we address the estimation of param-
eters through two data-driven methods. Thus, regarding the nature of the parameter of interest
(actually an M-estimate), we considered a parametric bootstrap approach and a non-parametric
re-sampling method to estimate the survival function of M(A):

(1) Parametric bootstrap approach. The asymptotic distribution in [8] obtained for the parameters
(mean and variance) is obtained for a mild assumption on the distribution of the data. In
this vein, we modeled the data by a specific parametric circular distribution, estimated the
parameters using the maximum likelihood method and estimated the distribution of M(A)

using B replications of the circular distribution with estimated parameters. For this method,
we have chosen the geodesic normal distribution on the circle, whose circular density rewrites
f (θ) = k−1(γ )e−(γ /2)(180/π)2dG(µ,θ)2

for some angle µ ∈ [−180◦, 180◦) and some real number
γ ≥ 0 and where k(γ ) is a normalizing constant given by k(γ ) = √

2π/γ erf (π
√

γ /2). The
geodesic normal distribution was first introduced by Pennec [31] and defined for general
Riemanian manifolds. In the particular case of the circle, Coeurjolly and Le Bihan [15]
studied its statistical properties (moments, simulation, asymptotic properties of the maximum
likelihood estimates, etc.). The choice of this circular distribution is guided by the fact that
parameter µ corresponds to the geodesic theoretical mean of this distribution (our parameter
of interest) and the MLE of µ is the sample geodesic mean.

(2) Non-parametric re-sampling method. Following advice in [2], the survival function is
estimated by replications of the data obtained by permutations (B replications are used).

In our application (presented in Section 4), we set p1 to 10% and used B = 5000 replications
to estimate C1 for each circular time series. We observed that for different values of A, both
approaches lead to quite similar results (for each climber). Therefore, we only kept the permutation
approach in the presentation of our empirical results.

Step 2. Deletion of false alarms.
Let A ≤ τ1 < · · · < τK̃ ≤ n − A be the K̃ change-points defined after Step 1. In this step, the

signal is segmented into K̃ + 1 subsamples. The subsample k consists in the set {yi|i ∈ [τk−1 +
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1, . . . , τk]}, called Yk , which are the records of the time period [τk−1 + 1, τk]. As there is K̃
change-points, k can vary from 1 to K̃ + 1 setting τ0 = 0 and τK̃+1 = n.

To delete false alarms, Bertrand et al. [8] then proposed to test the parameter of inter-
est (mean, variance) between two successive subsamples Yk and Yk+1, that is between {yi|i ∈
[τk−1 + 1, . . . , τk]} and {yj|j ∈ [τk + 1, . . . , τk+1]}.

In other words, K̃ statistical tests are formed and change points were kept if the corresponding
p-value was lower than a fixed value p2. In our setting, we modeled each signal on the period
[τk−1 + 1, τk] by independent observations of a circular random variable Yk for k = 1, . . . , K + 1,
we let µ̃k denote the geodesic mean of Yk and defined θk as dG(µ̃k , µ̃k+1). Then, we considered
the K̃ statistical tests

H0 : θk = 0 versus H1 : θk )= 0. (6)

To be close to the nature of the data, we again proceeded with these different statistical tests using
re-sampling methods (B = 5000 permutation tests). For this second step, we followed the advice
in [8] setting p2 to the value 10−6. With a slight alteration of notation, the final change-points are
denoted by τ1, . . . , τK̆ with A ≤ τ1 < · · · < τK̆ ≤ n − A and K̆ ≤ K̃ .

4. Results and discussion

4.1 Numerical results

The algorithm implemented in the R software and described in the previous section was applied
to the 2 × 15 = 30 circular time series. The window parameter has been set to A = 40 for the 30
time series. We selected A = 40 because the realization of one action of each limb (i.e. left arm
swing, right arm swing, left foot kick and right foot kick) took in average 40 points (i.e. a duration
of 10 s). Apart from this empirical choice, we would like to underline that the procedures have
also been applied with window sizes from A = 25 to A = 60. The obtained results were quite
similar to the findings presented later with the choice A = 40, this stability can be explained by
the fact that the Step 2 cancels many false discoveries.

We denote by µ̂G,t the piecewise constant function at time t estimated from the change-point
analysis given by

µ̂G,t =
K̆+1∑

k=1

µ̂G[(τk−1 + 1) : τk]1(t ∈ [τk−1 + 1, τk]),

where, we set by convention, τ0 = 0 and τK̆+1 = n. In order to quantify the local variations of the
data around µ̂G, we propose to define the following criterion:

ISE =
n∑

t=1

dG(yt , µ̂G,t)
2 =

K̆+1∑

k=1

(τk − (τk−1 + 1))

τk∑

t=τk−1

dG(yt , µ̂G[(τk−1 + 1) : τk])2. (7)

As a general comment, we noted that the second step of the fdpv method has allowed us to
delete between 1 and 3 potential change-points proposed by the first step. The computational
aspect was not negligible since due to the huge number of calculations of geodesic sample means
and due to the re-sampling procedures, the fdpv method required about 1 h for one time series
(of length n = 1874).

Figure 4 presents an example of the segmentation method with two data sets and their related
time series D(t, A) allowing to detect changes. All the segmentations can be found in the sup-
plementary material available online accompanying this paper. Table 1 aims at summing up the
numerical results. The number of change-points (after the second step) and the integrated squared

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f G

re
no

bl
e]

 a
t 0

6:
36

 0
8 

O
ct

ob
er

 2
01

3 



Journal of Applied Statistics 2327

0 500 1000 1500

−
5

0
0

5
0

!

!
!

!

! !

!

!

!

!

!

!
!

!

!

! !

!

!

!
!

!

! !

!

!

!

!

!

!
!

!

!

! !

!

0 500 1000 1500

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

!

!

!

!

!

!

!

!

!

!

!

!
! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
! !

!

!

!

!

0 500 1000 1500

−
1

0
0

−
5

0
0

5
0

1
0

0

!
! !

!

!

!

!

! !

!

!

!

!

!

!
!

! !

!
! !

!

!

!

!

! !

!

!

!

!

!

!
!

! !

0 500 1000 1500

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

! !

!

!

!

!

!

!

!

! !

!

!
!

!

!

! !

! !

!

!

!

!

!

!

!

! !

!

!
!

!

!

! !

(a)

(b)

Figure 4. Examples of change-point analysis of the circular time series based on the filtered derivatives method
with p-value. The data correspond to Figure 2. The two upper plots represent the selected change-points in
blue circle and the resulting piecewise constant function (corresponding to the geodesic means computed on
each segment). The bottom plots represent the related plot of the statistic D(k, A) in terms of k. The horizontal
line corresponds to the threshold C1. For both examples, all change-points selected after the Step 1 were
kept after the second step. The parameters of the method were A = 40, p1 = 10% and p2 = 10−4%.
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Table 1. Summary results for the 15 ice climbers: number of change points K̆ computed
via the filtered derivatives with p-value method for the time series ULC and LLC (first
two columns) and integrated squared error denoted by ISE and defined by Equation (7).

K̆ ISE

ULC LLC ULC LLC

Beginner 1 18 13 65.4 59.4
2 9 12 27.7 3.0
3 9 12 24.2 5.9
4 20 16 21.3 28.8
5 18 15 65.8 69.0
6 15 20 61.5 31.7
7 24 16 106.6 30.9
8 23 14 79.7 61.0
Average 17 14.8 56.5 36.2

Expert 1 18 12 160.9 141.4
2 23 17 205.9 144.3
3 24 24 120.3 83.7
4 16 17 227.6 134.8
5 22 17 131.6 104.0
6 14 14 153.3 66.0
7 16 7 150.3 28.7
Average 19 15.4 164.3 97.5

error (ISE) criterion are presented. Whereas the number of change-points was not really different
between a beginner and an expert climber, we highlight that the ISE was very discriminating. The
low values of the ISE criteria were related to the existence of plateaux for beginners. This will be
discussed in the next section.

Figure 3, presented in Section 2, shows in particular that the discrimination power of the
global geodesic variance (i.e. computed on the overall data set) was essentially due to the larger
range used by experts. After artificially rescaling the data, the global geodesic variance became
much less discriminant. Figure 5 illustrates the counterpart of such analysis based on the ISE
criterion. Simple statistics have been applied to the data in Table 1: a one-way ANOVA (fixed
factor: skill level) showed significantly higher ISE of ULC (F1,13 = 36.53, p < 0.0001) and LLC
(F1,13 = 10.89, p = 0.006) for expert climbers than for beginners. We highlight that our analysis
is much less affected by a rescaling of the data. Indeed, we applied our general methodology to
the artificially rescaled data (such that the range is [−90◦, 90◦]). We did not report the results
but after undertaking the similar one-way ANOVA, we still obtained significantly higher ISE of
ULC (F1,13 = 19.83, p = 0.0006) and LLC (F1,13 = 9.57, p = 0.009) for expert climbers than for
beginners. There was clear evidence that the change-point analysis is less sensitive to the support
of the time series which pertinently signifies in particular that locally the variability of angles for
a beginner is much lower than for an expert.

As suggested previously, differences about ULC and LLC numbers could come from different
number of action ratios between arm and foot; notably expert climbers often realized 1–3 foot
kicks for 1 arm swing; while beginners realized 1–3 arm swings for 1 foot kick. However, we did
not compute these data for this study as we did not examine arm to leg coupling.

4.2 Interpretation and discussion

Even if the global geodesic variance indicated significant differences between the two groups
of climbers, these differences are linked to the range of angles used by climbers rather than to

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f G

re
no

bl
e]

 a
t 0

6:
36

 0
8 

O
ct

ob
er

 2
01

3 



Journal of Applied Statistics 2329

50 100 150 200

0
20

40
60

80
10

0
12

0
14

0 !
!

!

!

!

!

!

!

beginners
experts

50 100 150 200 250

0
50

10
0

15
0

!

!

!

!

!

!

!

!

beginners
experts

Figure 5. ISE defined by Equation (7) based on the change-point analysis of the circular time series for the
15 ice climbers. The left plot corresponds to the results based on raw data, also presented in the last two
columns of Table 1. The right plot corresponds to the methodology based on data artificially rescaled in the
interval [−90◦, 90◦]. The abscissa (resp. the ordinates) correspond to the time series ULC (resp. LLC).

the variability of the angles distribution. Therefore, the analysis of the local variance was more
powerful to highlight significantly higher ISE for expert climbers than for non-experts, reflecting
different behavioral adaptations to environmental constraints (i.e. ice fall properties). The longer
duration spent without any movement of limbs statistically identified in the non-expert could have
several causes:

(1) They spend more time to determine their climbing path and their next point of anchorage,
suggesting their difficulty to perceive an affordance.
Qualitative analysis of video footage revealed that the non-experts swung their ice tool to
create a hole in the ice fall whereas natural holes existed close to them. Conversely, expert
climbers showed a greater dependence on the environment as they were able to exploit the
ice fall properties (e.g. hole in the ice fall) to vary their limb angular positions and their limb
movement patterns (e.g. swinging, kicking and hooking). Behavior variability corresponds
to adaptive perception–action coupling to climb quickly, efficiently and safely. For instance,
video footage showed that experts adopted vertical limb angular positions and sometimes
crossed their limbs to hook existing hole in the ice fall and to use with their crampons the
holes previously created with their ice tools.

(2) Non-experts spent more time to stabilize their body as they focused on keeping their body
equilibrium under control (according to the findings of Bourdin et al. [11] in rock climb-
ing), suggesting their relative independence of the environment. Body movements could be
perceived as a potential cause of a fall; therefore beginners seemed to try and control body
roll, yaw and pitch by freezing the motor system’s degrees of freedom (as already observed
in ski simulator tasks, [35]). Conversely, experts released the degrees of freedom to reach
greater range of limb motion and length of vertical body displacement. Moreover, experts
were able to exploit gravity (environmental constraint) by yaw and roll body motion leading
the body to move like a pendulum or a door. The capacity of the expert to vary their movement
patterns and limb angular positions revealed multi-stability of movement, that is a property
of non-linear dynamical systems [14].

(3) Last, the non-experts needed a confident anchorage that was often synonymous with a deep
anchorage. The high number of ice tool swinging and crampon kicking movements, and the
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high ratio between swinging actions and definitive anchorages supported this impression. In
particular, our results indicated that experts realized one ice tool swinging for one definitive
anchorage, and one crampon kicking for one definitive anchorage. Conversely, for non-expert
climbers, the ratio between definitive anchorages and swinging or kicking actions was 0.6
for ice tools and 0.2 for crampons. The non-expert climbers swung their ice tools two times
and their crampons five times before a definitive anchorage. Therefore they spent a long time
in a static body position leading to the onset of fatigue. This observation is in accordance
with previous research in rock climbing [33] which relates to the ‘three-holds-rule’: if a rock
climber uses a smaller number of holds he/she has to be quick enough to maintain equilibrium
on the surface. Conversely, if the number of holds is equal to or greater than three, it is more
likely that the rock climber will climb slowly, because his/her equilibrium is always under
control [33].

5. Conclusion

Our study provided a valuable method to assess circular data in the sport performance domain,
in particular the structure of variability through break-points in the upper-limbs and lower-limbs
angle time series. Our results of this change-point analysis indicated higher levels of variability
of limb angles for experts than for beginners suggesting greater dependence on the properties of
the performance environment and adaptive behaviors in expert climbers. Conversely, the lower
variance of limb angles assessed in beginners may reflect their independence of the environ-
mental performance constraints, since they focused on controlling body equilibrium. Finally, by
a structural analysis of variability, our method enabled the detection and understanding of the
break-points causing plateaux and a lack of climbing fluency in order to improve the learning
process in sport.
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